LDPRED2: BETTER, FASTER, STRONGER

PRIVÉ, ARBEL, VILHJÁLMSSON; BIORXIV 2020

DISCUSSION LED BY: BÁRBARA BITARELLO

02 - 07 - 2020

BACKGROUND: LDPRED

Important background

#DaftPunk #HarderBetterFaster #Vevo Daft Punk - Harder Better Faster (Official Video) Published in 2015: \sim 435 citations (less than PRSice from same year)

matrix of correlation between genetic variants (LD matrix), summary statistics from GWAS (β, p – value), genotype and phenotype files from test and validation sets

Infinitesimal:

- All markers are causal
- Effect sizes drawn from Gaussian
- Computationally efficient
- Not very plausible

Non-infinitesimal

- Assumes p of variants are causal - more plausible
- Analytical solution hard

 approximate MCMC
 Gibbs sampler (not
 efficient nor robust)

But actually also requires:

- big LD reference panel, correct model specifications not trivial
- Steps:
 - Coordinating summary stats, LD reference genotypes, validation or test genotypes
 - Estimating weights for variants which requires additional parameters.
 - Calculating PRS
 - User needs to calculate partial-R² on their own (e.g. in R)

LDpred uses a Bayesian framework to assing effect sizes from provided summary statistics and LD information

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$$
(1)

Unlinked markers and non-infinitesimal architecture Effects are drawn from a mixture distribution:

$$eta_j \sim egin{cases} \mathsf{N}(\mathsf{o}, rac{h^2}{\mathsf{M}p}), & ext{with probability } p. \ \mathsf{o}, & ext{otherwise}. \end{cases}$$

-LDpred1: h^2 estimated with constrained LD score regression (fixed intercpept=1) -Gibbs sampler algorithm: (2)

- 1. residualized effect sizes for each variant j: $\tilde{\beta}_j$
- 2. probability that variant *j* is causal: $\bar{p_j}$
- 3. β_i is sampled according to:

$$\beta_j | \tilde{\beta}_j \sim \begin{cases} \mathsf{N}(\frac{1}{1+\frac{Mp}{nh^2}} \tilde{\beta}_j, \frac{1}{1+\frac{Mp}{nh^2}} \frac{1}{n}), & \text{with probability } p. \\ \mathsf{O}, & \text{otherwise.} \end{cases}$$
(3)

4. posterior mean of $\beta_j | \tilde{\beta}_j : \omega_j$

GIBBS SAMPLER ALGORITHM: MAIN STEPS

Algorithm 1 LDpred, with hyper-parameters p	p and h^2 , LD matrix $oldsymbol{R}$ and summary statistics $\hat{oldsymbol{\gamma}}$, se $(\hat{oldsymbol{\gamma}})$ and
1: $\hat{eta} \leftarrow \frac{\hat{\gamma}}{\operatorname{se}(\hat{\gamma}) \cdot \sqrt{n}}$	> Initialization of scaled marginal effects (see previous se
2: $\Omega \leftarrow 0$	▷ Initialization of posterior
3: for $k = 1, \ldots, N_{\text{burn-in}} + N_{\text{iter}}$ do	⊳ Gibbs iter
4: for each variant j do	ightarrow All va
5: Compute $\tilde{\beta}_j$ according to (3)	
6: Compute \bar{p}_j according to (4)	
7: Sample β_j according to (5)	
8: Compute ω_j according to (6)	
9: end for	
10: if $k > N_{\text{burn-in}}$ then	
11: $\boldsymbol{\Omega} \leftarrow \boldsymbol{\Omega} + \boldsymbol{\overline{\omega}}$	
12: end if	
13: end for	
14: $\mathbf{\Omega} \leftarrow \mathbf{\Omega} / N_{\text{iter}}$	\triangleright Average of all ω after b
15: Return $\mathbf{\Omega} \cdot \operatorname{se}(\hat{\boldsymbol{\gamma}}) \cdot \sqrt{n}$	▷ Return posterior means, scaled back (see previous se

LDPRED: PROS AND CONS OVERVIEW

PROS:

- elegant modelling of genetic architecture
- assigns weights to variants instead of arbitrary P+T
- also offers P+T in the same framework
- mostly runs PLINK in the background, and Python scripts

CONS:

- Errors messages are cryptic
- Slow
- Gibbs sampler extremely sensitive to model parameters
- particularly bad for long-range LD regions (e.g HLA)
- MCMC setup might or not improve things and makes it it much slower
- No manual available.

New method: LDpred2

- Runs in bigsnpr package in R.
- LDpred-auto: learns parameters from the data. Stronger
- More accurate PRS: simulation and real data benchmarking
- Compares favorably to LDpred 1 and other methods [sort of]
- parallelization in C++ FASTER
- has tutorial!! Better https://privefl.github.io/ bigsnpr/articles/LDpred2.html

Binary phenotypes; each set 10X (average AUC is reported)

- UKBB data
- unrelated individuals 360K
 - ▶ 10,000 for validation, LD reference
 - 300,000 for GWAS
 - \blacktriangleright \sim 52,000 as test set
- HapMap3 variants 1.1 Million
- $h^2 = 0.4$ or $h^2 = 0.3$, prevalence 15%
- $\blacksquare M = \{300, 3000, 30000, 300000\}$
- Variance of genetic liability=*h*²
- HLA region
- Implemented in bigsnpr

REAL DATA: METHODS

- Unrelated individuals 360K
- All case-control phenotypes
- 10,000 for validation, LD reference
- lacksquare \sim 352,000 as test set
- Compare LDpred1, LDpred2, C+T, SCT, lassosum, PRS-CS
- summary statistics:

Trait	GWAS citation	GWAS sample size	GWAS #variants
Breast cancer (BRCA)	Michailidou et al. (2017)	137,045 / 119,078	11,792,542
Rheumatoid arthritis (RA)	Okada <i>et al.</i> (2014)	29,880 / 73,758	9,739,303
Type 1 diabetes (T1D)	Censin et al. (2017)	5913 / 8828	8,996,866
Type 2 diabetes (T2D)	Scott et al. (2017)	26,676 / 132,532	12,056,346
Prostate cancer (PRCA)	Schumacher et al. (2018)	79,148 / 61,106	20,370,946
Depression (MDD)	Wray et al. (2018)	59,851 / 113,154	13,554,550
Coronary artery disease (CAD)	Nikpay et al. (2015)	60,801 / 123,504	9,455,778
Asthma	Demenais et al. (2018)	19,954 / 107,715	2,001,280

Table 1: Summary of external GWAS summary statistics used. The GWAS sample size is the number of cases / controls in the GWAS.

METHODS: PERFORMANCE COMPARISONS

$$TPR = \frac{TP}{TP+FN}$$

Specificity = $\frac{TN}{TN+FP}$
FPR = 1 - Specificity

Image: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

SIMULATIONS: RESULTS

REAL DATA: RESULTS

REAL DATA: RESULTS

CONCLUSIONS

- Strengths: long-range LD and less polygenic traits, does not require validation step
- solves gibbs sampler inconsistencies
- higher prediction accuracy then LDpred1
- Use HapMap3 variants

- Not really better than lassosum?
- Still kinda slow

QC FOR LDPRED2-AUTO

Figure S2: Standard deviations derived from summary statistics of breast cancer based on equation (SI) versus the standard deviations of genotypes of individuals in the validation set. Coloring shows the quality control applied in this paper.